Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.479
Filter
1.
Invest Ophthalmol Vis Sci ; 65(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165707

ABSTRACT

Purpose: Diabetic keratopathy (DK) is a vision-threatening disease that occurs in people with diabetes. Mounting evidence indicates that microRNAs (miRNAs) are indispensable in nerve regeneration within DK. Herein, the role of miRNAs associated with DK, especially focusing on autophagy and apoptosis regulation, was investigated. Methods: To identify differentially expressed miRNAs, we performed miRNA sequencing on trigeminal ganglion (TG) tissues derived from streptozotocin-induced type 1 diabetic mellitus (T1DM) and normal mice. MiR-144-3p was chosen for the subsequent experiments. To explore the regulatory role of miR-144-3p in DK, miRNA antagomir was utilized to inhibit miR-144-3p expression. Bioinformatic tools were used to predict the target genes of miR-144-3p, and a dual-luciferase reporter assay was then applied for validation. Autophagy and apoptosis activities were measured utilizing TUNEL staining, immunofluorescence staining, and Western blotting. Results: Overall, 56 differentially expressed miRNAs were detected in diabetic versus control mice. In the diabetic mouse TG tissue, miR-144-3p expression was aberrantly enhanced, whereas decreasing its expression contributed to improved diabetic corneal re-epithelialization and nerve regeneration. Fork-head Box O1 (FOXO1) was validated as a target gene of miR-144-3p. Overexpression of FOXO1 could prevent both inadequate autophagy and excessive apoptosis in DK. Consistently, a specific miR-144-3p inhibition enhanced autophagy and prevented apoptosis in DK. Conclusions: In this study, our research confirmed the target binding relationship between miR-144-3p and FOXO1. Inhibiting miR-144-3p might modulate autophagy and apoptosis, which could generate positive outcomes for corneal nerves via targeting FOXO1 in DK.


Subject(s)
Cornea , Diabetes Complications , MicroRNAs , Diabetes Complications/metabolism , Diabetes Complications/pathology , Cornea/innervation , Cornea/pathology , Animals , Mice , Male , Mice, Inbred C57BL , Nerve Regeneration , Hyperglycemia/metabolism , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Epithelium/drug effects , Epithelium/metabolism , Autophagy , Apoptosis , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/pathology
2.
Cell Rep ; 38(7): 110379, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172130

ABSTRACT

Pluripotent-stem-cell-derived human intestinal organoids (HIOs) model some aspects of intestinal development and disease, but current culture methods do not fully recapitulate the diverse cell types and complex organization of the human intestine and are reliant on 3D extracellular matrix or hydrogel systems, which limit experimental control and translational potential for regenerative medicine. We describe suspension culture as a simple, low-maintenance method for culturing HIOs and for promoting in vitro differentiation of an organized serosal mesothelial layer that is similar to primary human intestinal serosal mesothelium based on single-cell RNA sequencing and histological analysis. Functionally, HIO serosal mesothelium has the capacity to differentiate into smooth-muscle-like cells and exhibits fibrinolytic activity. An inhibitor screen identifies Hedgehog and WNT signaling as regulators of human serosal mesothelial differentiation. Collectively, suspension HIOs represent a three-dimensional model to study the human serosal mesothelium.


Subject(s)
Epithelium/growth & development , Intestines/growth & development , Organoids/growth & development , Serous Membrane/growth & development , Tissue Culture Techniques , Alginates/pharmacology , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line , Collagen/pharmacology , Drug Combinations , Epithelium/drug effects , Hedgehog Proteins/metabolism , Humans , Intestines/ultrastructure , Laminin/pharmacology , Muscle, Smooth/cytology , Organoids/drug effects , Organoids/ultrastructure , Proteoglycans/pharmacology , Serous Membrane/drug effects , Serous Membrane/ultrastructure , Signal Transduction/drug effects , Suspensions , Wnt Proteins/metabolism
3.
Viruses ; 14(2)2022 01 22.
Article in English | MEDLINE | ID: mdl-35215808

ABSTRACT

Human Papillomaviruses have co-evolved with their human host, with each of the over 200 known HPV types infecting distinct epithelial niches to cause diverse disease pathologies. Despite the success of prophylactic vaccines in preventing high-risk HPV infection, the development of HPV anti-viral therapies has been hampered by the lack of enzymatic viral functions, and by difficulties in translating the results of in vitro experiments into clinically useful treatment regimes. In this review, we discuss recent advances in anti-HPV drug development, and highlight the importance of understanding persistent HPV infections for future anti-viral design. In the infected epithelial basal layer, HPV genomes are maintained at a very low copy number, with only limited viral gene expression; factors which allow them to hide from the host immune system. However, HPV gene expression confers an elevated proliferative potential, a delayed commitment to differentiation, and preferential persistence of the infected cell in the epithelial basal layer, when compared to their uninfected neighbours. To a large extent, this is driven by the viral E6 protein, which functions in the HPV life cycle as a modulator of epithelial homeostasis. By targeting HPV gene products involved in the maintenance of the viral reservoir, there appears to be new opportunities for the control or elimination of chronic HPV infections.


Subject(s)
Alphapapillomavirus/drug effects , Antiviral Agents/therapeutic use , Papillomavirus Infections/drug therapy , Persistent Infection/drug therapy , Antiviral Agents/pharmacology , Drug Development , Epithelium/drug effects , Epithelium/pathology , Epithelium/virology , Homeostasis/drug effects , Humans , Oncogene Proteins, Viral/antagonists & inhibitors , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Persistent Infection/pathology , Persistent Infection/virology
4.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35216185

ABSTRACT

Rupture of the basement membrane in fused palate tissue can cause the palate to separate after fusion in mice, leading to the development of cleft palate. Here, we further elucidate the mechanism of palatal separation after palatal fusion in 8-10-week-old ICR female mice. On day 12 of gestation, 40 µg/kg of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), sufficient to cause cleft palate in 100% of mice, was dissolved in 0.4 mL of olive oil containing toluene and administered as a single dose via a gastric tube. Fetal palatine frontal sections were observed by H&E staining, and epithelial cell adhesion factors, apoptosis, and cell proliferation were observed from the anterior to posterior palate. TUNEL-positive cells and Ki67-positive cells were observed around the posterior palatal dissection area of the TCDD-treated group. Moreover, in fetal mice exposed to TCDD, some fetuses exhibited cleft palate dehiscence during fusion. The results suggest that palatal dehiscence may be caused by abnormal cell proliferation in epithelial tissues, decreased intercellular adhesion, and inhibition of mesenchymal cell proliferation. By elucidating the mechanism of cleavage after palatal fusion, this research can contribute to establishing methods for the prevention of cleft palate development.


Subject(s)
Cleft Palate/chemically induced , Cleft Palate/metabolism , Palate/drug effects , Palate/metabolism , Polychlorinated Dibenzodioxins/adverse effects , Animals , Apoptosis/drug effects , Basement Membrane/drug effects , Basement Membrane/metabolism , Basement Membrane/pathology , Cell Proliferation/drug effects , Cleft Palate/pathology , Epithelium/drug effects , Epithelium/metabolism , Epithelium/pathology , Female , In Situ Nick-End Labeling/methods , Male , Mice , Mice, Inbred ICR , Palate/pathology
5.
Cells ; 11(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-35053344

ABSTRACT

Indoor air pollutants (IAP), which can pose a serious risk to human health, include biological pollutants, nitric oxide (NO), nitrogen dioxide (NO2), volatile organic compounds (VOC), sulfur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2), silica, metals, radon, and particulate matter (PM). The aim of our work is to conduct a multidisciplinary study of fine silica particles (<2.5 µm) in the presence or absence of ozone (O3), and evaluate their potential cytotoxicity using MTS, micronucleus, and the comet test in two cell lines. We analyzed A549 (human basal alveolar epithelial cell adenocarcinoma) and Hs27 (human normal fibroblasts) exposed to dynamic conditions by an IRC simulator under ozone flow (120 ppb) and in the presence of silica particles (40 µg/h). The viability of A549 and Hs27 cells at 48 and 72 h of exposure to silica or silica/ozone decreases, except at 72 h in Hs27 treated with silica/ozone. The micronucleus and comet tests showed a significant increase in the number of micronuclei and the % of DNA in the queue, compared to the control, in both lines in all treatments, even if in different cell times/types. We found that silica alone or with more O3 causes more pronounced genotoxic effects in A549 tumor cells than in normal Hs27 fibroblasts.


Subject(s)
Adenocarcinoma/pathology , Epithelium/pathology , Fibroblasts/pathology , Models, Biological , Mutagens/toxicity , Ozone/toxicity , Silicon Dioxide/toxicity , Cell Line, Tumor , Comet Assay , Epithelium/drug effects , Fibroblasts/drug effects , Humans , Micronucleus Tests
6.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35012988

ABSTRACT

Early diagnosis of oral squamous cell carcinoma (OSCC) remains an unmet clinical need. Therefore, elucidating the initial events of OSCC preceding tumor development could benefit OSCC prognosis. Here, we define the Langerhans cells (LCs) of the tongue and demonstrate that LCs protect the epithelium from carcinogen-induced OSCC by rapidly priming αßT cells capable of eliminating γH2AX+ epithelial cells, whereas γδT and natural killer cells are dispensable. The carcinogen, however, dysregulates the epithelial resident mononuclear phagocytes, reducing LC frequencies, while dendritic cells (DCs), macrophages, and plasmacytoid DCs (pDCs) populate the epithelium. Single-cell RNA-sequencing analysis indicates that these newly differentiated cells display an immunosuppressive phenotype accompanied by an expansion of T regulatory (Treg) cells. Accumulation of the Treg cells was regulated, in part, by pDCs and precedes the formation of visible tumors. This suggests LCs play an early protective role during OSCC, yet the capacity of the carcinogen to dysregulate the differentiation of mononuclear phagocytes facilitates oral carcinogenesis.


Subject(s)
Antineoplastic Agents/metabolism , Carcinogens/toxicity , Langerhans Cells/metabolism , 4-Nitroquinoline-1-oxide/toxicity , Cell Line, Tumor , Dendritic Cells/drug effects , Dendritic Cells/pathology , Epithelial Cells/metabolism , Epithelium/drug effects , Epithelium/pathology , Gene Expression Regulation, Neoplastic/drug effects , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Histones/metabolism , Humans , Immunity/drug effects , Langerhans Cells/drug effects , Phagocytes/drug effects , Phagocytes/metabolism , Phagocytes/pathology , Quinolones/toxicity , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Tongue/pathology , Transcriptome/genetics
7.
Hum Exp Toxicol ; 41: 9603271211062854, 2022.
Article in English | MEDLINE | ID: mdl-35041543

ABSTRACT

BACKGROUND: Lung cancer is the most common malignancy, and its mortality ranks first among malignancies. Non-small cell lung carcinoma (NSCLC) is the most common pathological subtype of lung cancer. It is reported that circular RNAs (circRNAs) feature prominently in the occurrence and metastasis of NSCLC. PURPOSE: This study aims to decipher the biological functions of circ_0006220 in NSCLC and the underlying mechanism. METHODS: The microarray data (GSE101586) were downloaded from the Gene Expression Omnibus database, and differentially expressed circRNAs in NSCLC tissues were screened using the GEO2R tool. Quantitative real-time polymerase chain reaction was used for detecting the expression of circ_0006220, miR-203-3p, and regulator of G-protein signaling 17 (RGS17) mRNA in NSCLC tissues and cells. The connection between circ_0006220 expression and clinicopathological indicators was analyzed through the chi-square test. EdU and cell counting kit-8 assays were carried out to detect cell growth. Cell migration and invasion were detected by transwell assays. Bioinformatics was used to predict, and RNA immunoprecipitation assay and dual-luciferase reporter gene assay were conducted for verifying, the targeted relationship among circ_0006220, miR-203-3p, and RGS17. RESULTS: The expression of circ_0006220 was elevated in NSCLC cells and tissues, and high circ_0006220 expression was significantly associated with unfavorable clinicopathological indicators. In addition, it was revealed that circ_0006220 overexpression facilitated NSCLC cell growth, migration, and invasion, whereas knocking down circ_0006220 had contrary effects. Furthermore, miR-203-3p was identified as a downstream target of circ_0006220, and circ_0006220 could sponge miR-203-3p; RGS17 was identified as a downstream target of miR-203-3p and was positively modulated by circ_0006220. CONCLUSIONS: Circ_0006220 up-regulates RGS17 expression by adsorbing miR-203-3p to promote NSCLC development.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/physiopathology , Cell Proliferation/drug effects , Lung Neoplasms/genetics , Lung Neoplasms/physiopathology , RGS Proteins/metabolism , RNA, Circular/metabolism , Cells, Cultured/drug effects , China , Epithelial Cells/drug effects , Epithelium/drug effects , Epithelium/metabolism , Gene Expression Regulation, Neoplastic , Humans , RGS Proteins/genetics , RNA, Circular/genetics
8.
Cell Mol Biol Lett ; 26(1): 51, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34886812

ABSTRACT

BACKGROUND: Ovarian cancer is a devastating gynecological malignancy and frequently presents as an advanced carcinoma with disseminated peritoneum metastasis. Acacetin exerts anti-cancerous effects in several carcinomas. Here, we sought to investigate acacetin function in ovarian cancer malignancy triggered by peritoneal mesothelial cells. METHODS: Peritoneal mesothelial cells were treated with acacetin, and then the conditioned medium was collected to treat ovarian cancer cells. Then, cell proliferation was analyzed by MTT assay. Transwell analysis was conducted to evaluate cell invasion. Protein expression was determined by western blotting. ELISA and qRT-PCR were applied to analyze inflammatory cytokine levels. The underlying mechanism was also explored. RESULTS: Acacetin suppressed cell proliferation and invasion, but enhanced cell apoptosis. Furthermore, mesothelial cell-evoked malignant characteristics were inhibited when mesothelial cells were pre-treated with acacetin via restraining cell proliferation and invasion, concomitant with decreases in proliferation-related PCNA, MMP-2 and MMP-9 levels. Simultaneously, acacetin reduced mesothelial cell-induced transcripts and production of pro-inflammatory cytokine IL-6 and IL-8 in ovarian cancer cells. Mechanically, acacetin decreased lysophosphatidic acid (LPA) release from mesothelial cells, and subsequent activation of receptor for advanced glycation end-products (RAGE)-PI3K/AKT signaling in ovarian cancer cells. Notably, exogenous LPA restored the above pathway, and offset the efficacy of acacetin against mesothelial cell-evoked malignancy in ovarian cancer cells, including cell proliferation, invasion and inflammatory cytokine production. CONCLUSIONS: Acacetin may not only engender direct inhibition of ovarian cancer cell malignancy, but also antagonize mesothelial cell-evoked malignancy by blocking LPA release-activated RAGE-PI3K/AKT signaling. Thus, these findings provide supporting evidence for a promising therapeutic agent against ovarian cancer.


Subject(s)
Epithelium/drug effects , Flavones/pharmacology , Lysophospholipids/metabolism , Ovarian Neoplasms/drug therapy , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Coculture Techniques/methods , Epithelium/metabolism , Epithelium/pathology , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
9.
Biomolecules ; 11(12)2021 12 07.
Article in English | MEDLINE | ID: mdl-34944487

ABSTRACT

Atopic dermatitis and psoriasis are two of the most common chronic skin conditions. Current target therapies represent viable and safe solutions for the most severe cases of these two dermatoses but, presently, several limitations exist in terms of efficacy and side effects. A new class of products, epithelium-derived cytokines (TSLP, IL-25, IL-33), show an increasing potential for use in target therapy for these patients, and demonstrate a direct link between a generalized inflammatory and oxidative stress status and the human skin. A review was conducted to better understand their role in the aforementioned conditions. Of these three molecules, TSLP led has been most often considered in studies regarding target therapies, and most of the results in the literature are related to this cytokine. These three cytokines share common stimuli and are linked to each other in both acute and chronic phases of these diseases, and have been challenged as target therapies or biomarkers of disease activity. The results lead to the conclusion that epithelium-derived cytokines could represent a therapeutic opportunity for these patients, especially in itch control. Furthermore, they might work better when paired together with currently available therapies or in combination with in-development treatments. Further studies are needed in order to verify the efficacy and safety of the biologic treatments currently under development.


Subject(s)
Cytokines/metabolism , Dermatitis, Atopic/immunology , Interleukin-17/metabolism , Interleukin-33/metabolism , Psoriasis/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Dermatitis, Atopic/drug therapy , Epithelium/drug effects , Epithelium/immunology , Gene Expression Regulation/drug effects , Humans , Molecular Targeted Therapy , Oxidative Stress/drug effects , Psoriasis/drug therapy
10.
Sci Rep ; 11(1): 23069, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845288

ABSTRACT

We compared the effect of commercial vaginal douching products on Lactobacillus crispatus, L. jensenii, L. gasseri, L. iners, E. coli, and immortalized vaginal epithelial cells (VK2). All studied douching products (vinegar, iodine and baking soda based) induced epithelial cell death, and all inhibited growth of E. coli. Co-culture of vaginal epithelial cells with any of the lactobacilli immediately following exposure to douching products resulted in a trend to less human cell death. However, co-culture of epithelial cells with L. iners was associated with higher production of IL6 and IL8, and lower IL1RA regardless of presence or type of douching solution. Co-culture with L. crispatus or L. jensenii decreased IL6 production in the absence of douches, but increased IL6 production after exposure to vinegar. Douching products may be associated with epithelial disruption and inflammation, and may reduce the anti-inflammatory effects of beneficial lactobacilli.


Subject(s)
Epithelium/drug effects , Epithelium/microbiology , Escherichia coli/drug effects , Lactobacillus/drug effects , Vaginal Douching/adverse effects , Acetic Acid , Cell Survival , Coculture Techniques , Cytokines/metabolism , Female , Humans , Hydrogen-Ion Concentration , Immune System , Interleukin-6/biosynthesis , Interleukin-8/biosynthesis , Iodine , Lactobacillus crispatus , Lactobacillus gasseri , Microbial Sensitivity Tests , Risk , Sodium Bicarbonate , Urinary Tract Infections/etiology , Urinary Tract Infections/prevention & control , Vagina/drug effects
11.
Molecules ; 26(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34771162

ABSTRACT

This work describes an untargeted analytical approach for the screening, identification, and characterization of the trans-epithelial transport of green tea (Camellia sinensis) catechin extracts with in vitro inhibitory effect against the SARS-CoV-2 papain-like protease (PLpro) activity. After specific catechin extraction, a chromatographic separation obtained six fractions were carried out. The fractions were assessed in vitro against the PLpro target. Fraction 5 showed the highest inhibitory activity against the SARS-CoV-2 PLpro (IC50 of 0.125 µg mL-1). The untargeted characterization revealed that (-)-epicatechin-3-gallate (ECG) was the most abundant compound in the fraction and the primary molecule absorbed by differentiated Caco-2 cells. Results indicated that fraction 5 was approximately 10 times more active than ECG (IC50 value equal to 11.62 ± 0.47 µg mL-1) to inhibit the PLpro target. Overall, our findings highlight the synergistic effects of the various components of the crude extract compared to isolated ECG.


Subject(s)
Catechin/pharmacology , Coronavirus Papain-Like Proteases/metabolism , Tea/metabolism , Antiviral Agents/chemistry , COVID-19/metabolism , Caco-2 Cells , Camellia sinensis/metabolism , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/metabolism , Coronavirus Papain-Like Proteases/drug effects , Epithelium/drug effects , Epithelium/metabolism , Humans , Mass Spectrometry/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Tea/chemistry , Tea/physiology , COVID-19 Drug Treatment
12.
Cells ; 10(11)2021 11 19.
Article in English | MEDLINE | ID: mdl-34831451

ABSTRACT

Tight junctions (TJs) play an important role in water, ion, and solute transport through the paracellular pathway of epithelial cells; however, their role in diabetes-induced salivary gland dysfunction remains unknown. Here, we found that the TJ proteins claudin-1 and claudin-3 were significantly increased in the submandibular glands (SMGs) of db/db mice and high glucose (HG)-treated human SMGs. HG decreased paracellular permeability and increased claudin-1 and claudin-3 expression in SMG-C6 cells. Knockdown of claudin-1 or claudin-3 reversed the HG-induced decrease in paracellular permeability. MiR-22-3p was significantly downregulated in diabetic SMGs and HG-treated SMG-C6 cells. A miR-22-3p mimic suppressed claudin-1 and claudin-3 expression and abolished the HG-induced increases in claudin-1 and claudin-3 levels in SMG-C6 cells, whereas a miR-22-3p inhibitor produced the opposite effects. Specificity protein-1 (Sp1) was enhanced in diabetic SMGs and HG-treated SMG-C6 cells, which promoted claudin-1 and claudin-3 transcription through binding to the corresponding promoters. A luciferase reporter assay confirmed that miR-22-3p repressed Sp1 by directly targeting the Sp1 mRNA 3'-untranslated region (3'-UTR). Consistently, the miR-22-3p mimic suppressed, whereas the miR-22-3p inhibitor enhanced, the effects of HG on Sp1 expression. Taken together, our results demonstrate a new regulatory pathway through which HG decreases the paracellular permeability of SMG cells by inhibiting miR-22-3p/Sp1-mediated claudin-1 and claudin-3 expression.


Subject(s)
Cell Membrane Permeability , Claudins/metabolism , Epithelium/metabolism , Glucose/toxicity , MicroRNAs/metabolism , Signal Transduction , Sp1 Transcription Factor/metabolism , Submandibular Gland/metabolism , Animals , Base Sequence , Cell Line , Cell Membrane Permeability/drug effects , Claudins/genetics , Diabetes Mellitus, Experimental/pathology , Down-Regulation/drug effects , Epithelium/drug effects , Epithelium/ultrastructure , Humans , Male , Mice , MicroRNAs/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Rats , Signal Transduction/drug effects , Submandibular Gland/ultrastructure , Tissue Culture Techniques , Transcription, Genetic , Up-Regulation/drug effects
13.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575891

ABSTRACT

Zinc pyrithione (ZnPT) is an anti-fungal drug delivered as a microparticle to skin epithelia. It is one of the most widely used ingredients worldwide in medicated shampoo for treating dandruff and seborrheic dermatitis (SD), a disorder with symptoms that include skin flaking, erythema and pruritus. SD is a multi-factorial disease driven by microbiol dysbiosis, primarily involving Malassezia yeast. Anti-fungal activity of ZnPT depends on the cutaneous availability of bioactive monomeric molecular species, occurring upon particle dissolution. The success of ZnPT as a topical therapeutic is underscored by the way it balances treatment efficacy with formulation safety. This review demonstrates how ZnPT achieves this balance, by integrating the current understanding of SD pathogenesis with an up-to-date analysis of ZnPT pharmacology, therapeutics and toxicology. ZnPT has anti-fungal activity with an average in vitro minimum inhibitory concentration of 10-15 ppm against the most abundant scalp skin Malassezia species (Malassezia globosa and Malassezia restrica). Efficacy is dependent on the targeted delivery of ZnPT to the skin sites where these yeasts reside, including the scalp surface and hair follicle infundibulum. Imaging and quantitative analysis tools have been fundamental for critically evaluating the therapeutic performance and safety of topical ZnPT formulations. Toxicologic investigations have focused on understanding the risk of local and systemic adverse effects following exposure from percutaneous penetration. Future research is expected to yield further advances in ZnPT formulations for SD and also include re-purposing towards a range of other dermatologic applications, which is likely to have significant clinical impact.


Subject(s)
Antifungal Agents/administration & dosage , Epithelium/drug effects , Organometallic Compounds/administration & dosage , Pyridines/administration & dosage , Skin/drug effects , Administration, Cutaneous , Animals , Antifungal Agents/chemistry , Dermatitis, Seborrheic/diagnosis , Dermatitis, Seborrheic/drug therapy , Dermatitis, Seborrheic/etiology , Dysbiosis , Epidermis/drug effects , Epithelium/microbiology , Humans , Microbial Sensitivity Tests , Optical Imaging/methods , Organometallic Compounds/chemistry , Pyridines/chemistry , Skin/microbiology , Skin Absorption , Spectrum Analysis
14.
Int J Mol Sci ; 22(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576264

ABSTRACT

After the discovery of endogenous dinitrosyl iron complexes (DNICs) as a potential biological equivalent of nitric oxide (NO), bioinorganic engineering of [Fe(NO)2] unit has emerged to develop biomimetic DNICs [(NO)2Fe(L)2] as a chemical biology tool for controlled delivery of NO. For example, water-soluble DNIC [Fe2(µ-SCH2CH2OH)2(NO)4] (DNIC-1) was explored for oral delivery of NO to the brain and for the activation of hippocampal neurogenesis. However, the kinetics and mechanism for cellular uptake and intracellular release of NO, as well as the biocompatibility of synthetic DNICs, remain elusive. Prompted by the potential application of NO to dermato-physiological regulations, in this study, cellular uptake and intracellular delivery of DNIC [Fe2(µ-SCH2CH2COOH)2(NO)4] (DNIC-2) and its regulatory effect/biocompatibility toward epidermal cells were investigated. Upon the treatment of DNIC-2 to human fibroblast cells, cellular uptake of DNIC-2 followed by transformation into protein-bound DNICs occur to trigger the intracellular release of NO with a half-life of 1.8 ± 0.2 h. As opposed to the burst release of extracellular NO from diethylamine NONOate (DEANO), the cell-penetrating nature of DNIC-2 rationalizes its overwhelming efficacy for intracellular delivery of NO. Moreover, NO-delivery DNIC-2 can regulate cell proliferation, accelerate wound healing, and enhance the deposition of collagen in human fibroblast cells. Based on the in vitro and in vivo biocompatibility evaluation, biocompatible DNIC-2 holds the potential to be a novel active ingredient for skincare products.


Subject(s)
Biocompatible Materials/chemistry , Fibroblasts/drug effects , Iron/chemistry , Nitric Oxide/chemistry , Nitrogen Oxides/chemistry , Skin/drug effects , Animals , Cell Line , Cell Movement , Cell Proliferation , Cell Survival , Collagen/chemistry , Cornea/drug effects , Drug Delivery Systems , Embryo, Nonmammalian/drug effects , Epithelium/drug effects , Eye/drug effects , Fibroblasts/metabolism , Humans , In Vitro Techniques , Kinetics , Melanocytes/metabolism , Oxygen/chemistry , Pigmentation , Wound Healing , Zebrafish/embryology
15.
Eur J Histochem ; 65(3)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34474552

ABSTRACT

The epididymis is an organ that plays a key role in sperm maturation. The aim of this study was to examine the association between the chronic treatment of mature male rats with letrozole and morphological evaluation and morphometric values of epididymis as well as changes in the number of apoptotic cells in epididymal epithelium. Adult rats were treated with letrozole for 6 months and the epididymis weight, morphology, morphometric values and the number of apoptotic cells in  the epithelium were examined. Long-term aromatase inhibition resulted in presence of intraepithelial clear vacuoles, hyperplasia of clear cells and a hyperplastic alteration in the epithelium known as a cribriform change. Moreover, changes in diameters of the epididymal duct and the epididymal lumen and changes in the epididymal epithelium height were observed. The number of apoptotic epithelial cells was increased in letrozole-treated group. It can be indicated that chronic treatment with letrozole can affect morphology, morphometric values and apoptosis in the epididymis of adult male rats. Observed changes are similar to that observed in the aging processes and may also be important for patients treated with aromatase inhibitors.


Subject(s)
Apoptosis/drug effects , Aromatase Inhibitors/toxicity , Epididymis/drug effects , Epithelium/drug effects , Letrozole/toxicity , Animals , Epididymis/metabolism , Epithelium/metabolism , Estradiol/metabolism , Male , Rats, Wistar
16.
PLoS One ; 16(9): e0257784, 2021.
Article in English | MEDLINE | ID: mdl-34582497

ABSTRACT

Drug repurposing has the potential to bring existing de-risked drugs for effective intervention in an ongoing pandemic-COVID-19 that has infected over 131 million, with 2.8 million people succumbing to the illness globally (as of April 04, 2021). We have used a novel `gene signature'-based drug repositioning strategy by applying widely accepted gene ranking algorithms to prioritize the FDA approved or under trial drugs. We mined publically available RNA sequencing (RNA-Seq) data using CLC Genomics Workbench 20 (QIAGEN) and identified 283 differentially expressed genes (FDR<0.05, log2FC>1) after a meta-analysis of three independent studies which were based on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection in primary human airway epithelial cells. Ingenuity Pathway Analysis (IPA) revealed that SARS-CoV-2 activated key canonical pathways and gene networks that intricately regulate general anti-viral as well as specific inflammatory pathways. Drug database, extracted from the Metacore and IPA, identified 15 drug targets (with information on COVID-19 pathogenesis) with 46 existing drugs as potential-novel candidates for repurposing for COVID-19 treatment. We found 35 novel drugs that inhibit targets (ALPL, CXCL8, and IL6) already in clinical trials for COVID-19. Also, we found 6 existing drugs against 4 potential anti-COVID-19 targets (CCL20, CSF3, CXCL1, CXCL10) that might have novel anti-COVID-19 indications. Finally, these drug targets were computationally prioritized based on gene ranking algorithms, which revealed CXCL10 as the common and strongest candidate with 2 existing drugs. Furthermore, the list of 283 SARS-CoV-2-associated proteins could be valuable not only as anti-COVID-19 targets but also useful for COVID-19 biomarker development.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning/methods , SARS-CoV-2/genetics , Antiviral Agents/therapeutic use , Drug Evaluation, Preclinical/methods , Epithelial Cells/drug effects , Epithelium/drug effects , Humans , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Respiratory System/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
17.
Int J Mol Sci ; 22(16)2021 08 17.
Article in English | MEDLINE | ID: mdl-34445563

ABSTRACT

Choroid plexus (CP) sequesters cadmium and other metals, protecting the brain from these neurotoxins. These metals can induce cellular stress and modulate homeostatic functions of CP, such as solute transport. We previously showed in primary cultured neonatal rat CP epithelial cells (CPECs) that cadmium induced cellular stress and stimulated choline uptake at the apical membrane, which interfaces with cerebrospinal fluid in situ. Here, in CPECs, we characterized the roles of glutathione (GSH) and Zinc supplementation in the adaptive stress response to cadmium. Cadmium increased GSH and decreased the reduced GSH-to-oxidized GSH (GSSG) ratio. Heat shock protein-70 (Hsp70), heme oxygenase (HO-1), and metallothionein (Mt-1) were induced along with the catalytic and modifier subunits of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis. Inhibition of GCL by l-buthionine sulfoximine (BSO) enhanced stress protein induction and stimulation of choline uptake by cadmium. Zinc alone did not induce Hsp70, HO-1, or GCL subunits, or modulate choline uptake. Zinc supplementation during cadmium exposure attenuated stress protein induction and stimulation of choline uptake; this effect persisted despite inhibition of GSH synthesis. These data indicated up-regulation of GSH synthesis promotes adaptation to cadmium-induced cellular stress in CP, but Zinc may confer cytoprotection independent of GSH.


Subject(s)
Cadmium/toxicity , Choline/metabolism , Choroid Plexus/drug effects , Epithelium/drug effects , Glutathione/administration & dosage , Oxidative Stress/drug effects , Zinc/administration & dosage , Animals , Animals, Newborn , Choroid Plexus/metabolism , Choroid Plexus/pathology , Dietary Supplements , Epithelium/metabolism , Epithelium/pathology , Rats , Rats, Sprague-Dawley
18.
J Clin Invest ; 131(16)2021 08 16.
Article in English | MEDLINE | ID: mdl-34396988

ABSTRACT

Ovarian cancer is the leading cause of gynecological malignancy-related deaths, due to its widespread intraperitoneal metastases and acquired chemoresistance. Mesothelial cells are an important cellular component of the ovarian cancer microenvironment that promote metastasis. However, their role in chemoresistance is unclear. Here, we investigated whether cancer-associated mesothelial cells promote ovarian cancer chemoresistance and stemness in vitro and in vivo. We found that osteopontin is a key secreted factor that drives mesothelial-mediated ovarian cancer chemoresistance and stemness. Osteopontin is a secreted glycoprotein that is clinically associated with poor prognosis and chemoresistance in ovarian cancer. Mechanistically, ovarian cancer cells induced osteopontin expression and secretion by mesothelial cells through TGF-ß signaling. Osteopontin facilitated ovarian cancer cell chemoresistance via the activation of the CD44 receptor, PI3K/AKT signaling, and ABC drug efflux transporter activity. Importantly, therapeutic inhibition of osteopontin markedly improved the efficacy of cisplatin in both human and mouse ovarian tumor xenografts. Collectively, our results highlight mesothelial cells as a key driver of ovarian cancer chemoresistance and suggest that therapeutic targeting of osteopontin may be an effective strategy for enhancing platinum sensitivity in ovarian cancer.


Subject(s)
Osteopontin/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Epithelium/drug effects , Epithelium/metabolism , Epithelium/pathology , Female , Humans , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Organoids/drug effects , Organoids/metabolism , Organoids/pathology , Osteopontin/antagonists & inhibitors , Ovarian Neoplasms/pathology , Paracrine Communication/drug effects , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology , Xenograft Model Antitumor Assays
19.
Front Immunol ; 12: 660524, 2021.
Article in English | MEDLINE | ID: mdl-34262561

ABSTRACT

Vaginal mucosal surfaces naturally offer some protection against sexually transmitted infections (STIs) including Human Immunodeficiency Virus-1, however topical preventative medications or vaccine designed to boost local immune responses can further enhance this protection. We previously developed a novel mucosal vaccine strategy using viral vectors integrated into mouse dermal epithelium to induce virus-specific humoral and cellular immune responses at the site of exposure. Since vaccine integration occurs at the site of cell replication (basal layer 100-400 micrometers below the surface), temporal epithelial thinning during vaccine application, confirmed with high resolution imaging, is desirable. In this study, strategies for vaginal mucosal thinning were evaluated noninvasively using optical coherence tomography (OCT) to map reproductive tract epithelial thickness (ET) in macaques to optimize basal layer access in preparation for future effective intravaginal mucosal vaccination studies. Twelve adolescent female rhesus macaques (5-7kg) were randomly assigned to interventions to induce vaginal mucosal thinning, including cytobrush mechanical abrasion, the chemical surfactant spermicide nonoxynol-9 (N9), the hormonal contraceptive depomedroxyprogesterone acetate (DMPA), or no intervention. Macaques were evaluated at baseline and after interventions using colposcopy, vaginal biopsies, and OCT imaging, which allowed for real-time in vivo visualization and measurement of ET of the mid-vagina, fornices, and cervix. P value ≤0.05 was considered significant. Colposcopy findings included pink, rugated tissue with variable degrees of white-tipped, thickened epithelium. Baseline ET of the fornices was thinner than the cervix and vagina (p<0.05), and mensing macaques had thinner ET at all sites (p<0.001). ET was decreased 1 month after DMPA (p<0.05) in all sites, immediately after mechanical abrasion (p<0.05) in the fornix and cervix, and after two doses of 4% N9 (1.25ml) applied over 14 hrs in the fornix only (p<0.001). Histological assessment of biopsied samples confirmed OCT findings. In summary, OCT imaging allowed for real time assessment of macaque vaginal ET. While varying degrees of thinning were observed after the interventions, limitations with each were noted. ET decreased naturally during menses, which may provide an ideal opportunity for accessing the targeted vaginal mucosal basal layers to achieve the optimum epithelial thickness for intravaginal mucosal vaccination.


Subject(s)
Cervix Uteri/cytology , Epithelium/immunology , Mucous Membrane/anatomy & histology , Mucous Membrane/immunology , Tomography, Optical Coherence/methods , Vaccines/administration & dosage , Vagina/cytology , Animals , Drug Delivery Systems , Epithelial Cells , Epithelium/drug effects , Female , Macaca mulatta , Mice , Mucous Membrane/drug effects , Simian Immunodeficiency Virus/physiology , Vaccines/immunology , Vagina/immunology
20.
Nat Commun ; 12(1): 4566, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315881

ABSTRACT

The airway epithelium serves as the interface between the host and external environment. In many chronic lung diseases, the airway is the site of substantial remodeling after injury. While, idiopathic pulmonary fibrosis (IPF) has traditionally been considered a disease of the alveolus and lung matrix, the dominant environmental (cigarette smoking) and genetic (gain of function MUC5B promoter variant) risk factor primarily affect the distal airway epithelium. Moreover, airway-specific pathogenic features of IPF include bronchiolization of the distal airspace with abnormal airway cell-types and honeycomb cystic terminal airway-like structures with concurrent loss of terminal bronchioles in regions of minimal fibrosis. However, the pathogenic role of the airway epithelium in IPF is unknown. Combining biophysical, genetic, and signaling analyses of primary airway epithelial cells, we demonstrate that healthy and IPF airway epithelia are biophysically distinct, identifying pathologic activation of the ERBB-YAP axis as a specific and modifiable driver of prolongation of the unjammed-to-jammed transition in IPF epithelia. Furthermore, we demonstrate that this biophysical state and signaling axis correlates with epithelial-driven activation of the underlying mesenchyme. Our data illustrate the active mechanisms regulating airway epithelial-driven fibrosis and identify targets to modulate disease progression.


Subject(s)
Epithelium/physiopathology , Idiopathic Pulmonary Fibrosis/physiopathology , Lung/physiopathology , Adaptor Proteins, Signal Transducing/metabolism , Amphiregulin/genetics , Amphiregulin/metabolism , Biophysical Phenomena/drug effects , Epithelium/drug effects , ErbB Receptors/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Genetic Predisposition to Disease , Humans , Idiopathic Pulmonary Fibrosis/genetics , Keratin-5/genetics , Keratin-5/metabolism , Lung/drug effects , Mucin-5B/genetics , Mucin-5B/metabolism , Quinazolines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Risk Factors , Signal Transduction/drug effects , Transcription Factors/metabolism , Tyrphostins/pharmacology , Verteporfin/pharmacology , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...